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Abstract

This paper introduces a novel independent component analysis (ICA) approach to the separation of nonlinear

convolutive mixtures. The proposed model is an extension of the well-known post nonlinear (PNL) mixing model and

consists of the convolutive mixing of PNL mixtures. Theoretical proof of existence and uniqueness of the solution under

proper assumptions is provided. Feedforward and recurrent demixing architectures based on spline neurons are

introduced and compared. Source separation is performed by minimizing the mutual information of the output signals

with respect to the network parameters. More specifically, the proposed architectures perform on-line nonlinear

compensation and score function estimation by proper use of flexible spline nonlinearities, yielding a significant

performance improvement in terms of source pdf matching and algorithm speed of convergence. Experimental tests on

different signals are described to demonstrate the effectiveness of the proposed approach.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The interest of the scientific community for blind signal processing and in particular for blind source
separation (BSS), performed through independent component analysis (ICA), has been considerably
growing in last years. This interest is justified by the number of different approaches and applications. As a
matter of fact, in several fields, from multimedia to telecommunications and biomedicine, ICA is currently
employed to effectively remove interfering signals from the signal of interest. Furthermore it is interesting
e front matter r 2005 Elsevier B.V. All rights reserved.
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to note that many array signal processing or blind channel deconvolution problems can now be casted into
the ICA framework.
Initial studies on ICA aimed at solving the well-known cocktail party problem, in a static or slightly

reverberant environment. Pioneering works in ICA appeared at the beginning of the 1990s, when Jutten
and Herault presented their ‘‘neurometric architecture’’ [1] and Comon published his often referenced paper
[2]. From that time many different algorithms have been developed. The main approaches to ICA were by
nonlinear principal component analysis (PCA), factor analysis, projection pursuit and redundancy
reduction. Some approaches to source separation were based on estimation of high order cumulants [2,3].
The INFOMAX principle inspired the well-known MaxEntropy method [4], while other solutions to ICA
employed the minimization of mutual information (MMI) [5] or the maximization of the likelihood
function [6,7]. A very popular algorithm is FastICA, which minimizes the negentropy using a fixed point
algorithm [8] and finally the EASI algorithm [9] uses the so-called ‘‘relative gradient’’ instead of a stochastic
gradient in the MMI framework. All these algorithms are based on different cost functions, but can be
embodied in a common general formulation [10].
One of the more critical issues in ICA is the matching between the probability distribution function (pdf)

of sources and the algorithm’s parameters. In order to improve the pdf matching process, the so-called
Flexible ICA was recently proposed [11]. Flexible ICA provides faster learning by estimating the
parameters related to the pdf of signals. Several methods based on polynomials [12] and on parametric
function approaches [7,13] were proposed.
Conventional ICA approaches perform the blind source recovery in static or slightly reverberant

environment. Unfortunately linear mixing models are too unrealistic and unsatisfactory in a lot of real
situations. Examples of more complex nonlinear mixing models were presented in [14,15]. In [16] the
existence of the solution to some nonlinear problems was explored. Nonuniqueness of the solution in the
general case was evidenced, unless some additive constraints about the mixing model are taken into
account.
Recently the so-called post nonlinear (PNL) mixing problem has received much attention, also with

regard to the existence and uniqueness problem [17–20]. Only a few works have addressed the convolutive
PNL [21,22] or even a more complex static nonlinear mixing [23]. In [24] a complete review of most recent
results in BSS of nonlinear mixing models was presented.
In this paper, the solution of the BSS problem in a novel convolutive nonlinear mixing environ-

ment is introduced and described. Some results were preliminary described in [25]. The proposed model
has a higher complexity of the ones currently available in literature, being composed by a PNL block
followed by a convolutive mixing channel. In particular the theoretical proof of the existence
and the uniqueness of the solution under some assumptions is furnished. Different separating architectures
based on the use of feedforward and recurrent networks are tested and compared in typical mixing
environments.
2. Nonlinear convolutive mixing model

The aim of this section is to describe the existing approaches to the BSS problem in different mixing
environments and to briefly explore the main results in terms of existence and uniqueness of the solution.
Given a set of N source signals at time n s½n� ¼ fs1½n�; . . . ; sN ½n�g

T; conventional ICA tries to recover s½n�
from the observation of a linear at least convolutive mixture x½n� ¼ fx1½n�; . . . ; xN ½n�g

T: The solution can be
found up to some trivial nonuniqueness and desired solution can be expressed as

y½n� ¼ PKDs½n�, (1)

where P is a permutation matrix, K is a diagonal scaling matrix and D is a diagonal delay matrix.
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Conventional ICA must be properly extended in order to take into account the higher complexity of
real environments. For this reason in last years more complex mixing environments have been introduced.
The general formulation of a nonlinear hidden mixing model in a convolutive environment is

x½n� ¼ Ffs½n�; . . . ; s½n � L�g, (2)

where Ff�g is some nonlinear functional. Given the mixing environment (2), the solution of the BSS
problem is found by a proper transformation Gf�g

y½n� ¼ fy1½n�; . . . ; yN ½n�g
T ¼ Gfx½n�g. (3)

The issue of recovering the original sources in the general mixing model (2) with no particular a priori
assumptions is affected by a strong nonuniqueness. To illustrate this, consider two independent random
variables s1 with uniform distribution in ½0; 2p� and s2 with Rayleigh distribution. Given the two nonlinear
transformations y1 ¼ s2 cos s1 and y2 ¼ s2 sin s1; the random variables y1; y2 are still independent but are
gaussian distributed [23]. This simple example shows that in many cases the independence constraint is not
strong enough to recover the original sources, unless additional assumptions about the transformationFf�g

or the mixing and demixing model are made [18]. In practice the main issue is to find the theoretical
conditions in terms of sources, mixing environment, recovering architecture, capable to guarantee the
existence of the solution. For example in [16] a constructive approach to the separation problem in a
general static nonlinear mixing environment was proposed. In this work a Gram–Schmidt procedure is
employed to iteratively separate each component of the mixed signals. Uniqueness of the solution (up to
some trivial nonuniqueness) is guaranteed if the number of sources is two, the mixing function Ff�g is a

conformal zero preserving mapping and the densities of the independent components have a bounded known
support.
A possible conformal mapping is the well-known PNL model [17–19,23]. In this case a proof

of the existence and uniqueness of the solution with more than two sources was furnished [18]. In addition,
a PNL convolutive mixing model was studied [22], also when a static mixing after the PNL model is
added [23].
The solution of the general nonlinear convolutive ICA requires proper a priori assumptions concerning

the mixing–demixing model. Using the same notation of (2) and (3), let Y be the set of all vectors y having
independent components, defined by

Y ¼ y pyðyÞ ¼
Y

i

pyi
ðyiÞ; y ¼ G 
 x ¼ G 
F 
 s ¼ H 
 s

�����
( )

, (4)

where Hf�g in general has a nondiagonal Jacobian matrix.
As a matter of fact, it is possible to find an infinite number of functions Gf�g such that y ¼ G 
 x 2 Y; but

not all of them have a diagonal Jacobian matrix. So most of the solutions in Y are not of interest, to mean
that output independence by itself is a weak approach to the BSS problem in a general nonlinear
environment.
In the following the issue of recovering original sources in the presence of a nonlinear convolutive mixing

is explored. A priori knowledge of the mixing model is exploited to design the recovering network.
2.1. Model description

In this work the convolutive nonlinear mixing model of Fig. 1 is assumed.
In Fig. 1 A is a N � N matrix, F½r½n�� ¼ ½f 1½r1½n��; . . . ; f N ½rN ½n���

T is a N � 1 vector of nonlinear
functions (one for each channel) and Z½k� is a FIR matrix where each element is a LZ-tap FIR filter [26].
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Fig. 2. Block diagram of the recovering architecture.

s 

A 
x 

Z[k]F[.]

f1[r1[n]]

fN[rN[n]]

f

r 

zN1[k] 

aNN

a11
∑ 

∑ 

∑ 

aNi aiN

zNN[k]

z11[k]

ziN[k] 

zi1[k]

i[ri[n]]

∑

∑

∑

Fig. 1. Block diagram of the proposed convolutive nonlinear mixing model.
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In formulas

x½n� ¼ F½s½n�� ¼
XLZ�1

k¼0

Z½k�F½As½n � k��. (5)

Interest in this novel mixing environment is justified mainly by its higher generality. Moreover the PNL
model can be considered as a particular case of (5).
The recovering architecture is represented in Fig. 2 and is based on the so-called mirror model [27].
In Fig. 2 matrixW; vector G; and matrix B perform channel inversion, nonlinear compensation and static

demixing, respectively. IfW is implemented by a FIR matrix where each element is a LW -tap FIR filter, the
outputs of the recovering structure can be written as

y½n� ¼ G½x� ¼ BG
XLW�1

k¼0

W½k�x½n � k�

" #
. (6)

Knowledge about the mixing model is the key to avoid the strict nonuniqueness of the solution, in the sense
of limiting the cardinality of all possible independent output solutions.

2.2. Source separability

The following proposition extends Lemma 1 formerly introduced in [19] and shows how the elements of
Y can differ only for some trivial ambiguity, if the mixing model is (5) and the demixing model is (6).

Proposition 1. Given the convolutive, nonlinear mixture model FfA;F;Zg (5) and the recovery model

GfB;G;Wg (6), assuming that:
(a)
 A is a nonsingular matrix of nonzero entries;

(b)
 Z½k� is a convolutive mixing channel admitting an inverse;
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(c)
 gi and f i ði ¼ 1; . . . ;NÞ are differentiable, invertible, zero preserving monotone functions;

(d)
 s½n� is a random vector whose components are spatially independent, temporally white and have finite

support;

(e)
 the pdf of si½n� vanishes for at least one real s̄i;
then the components of the output vector y½n� are independent if and only if2 32 3

y½n� ¼ PKDs½n� ¼ P

l1 0

. .
.

0 lN

6664
7775

z�d 0

. .
.

0 z�d

6664
7775s½n�.

ð7Þ
Proof. See the Appendix A.

In Proposition 1 the convolutive environment forces to model inputs as stochastic processes so signals si½n�

and sj½n� are spatially independent if and only if psisj
ðsi½n�; sj½m�Þ ¼ psj

ðsj ½m�Þpsi
ðsi½n�Þ 8n;m:

Assuming that the mixing environment is invertible, Proposition 1 guarantees the existence and the
uniqueness of the solution of the BSS problem in the presence of white sources and FIR demixing matrices.
In addition, experimental tests showed that good results were obtained also when an IIR demixing model
was used to separate speech signals.

3. Demixing algorithms and architectures

The efficient design of the demixing strategy requires the choice of the proper demixing model, the cost
function measuring independence of the outputs and an effective optimization method. In this section
feedforward and recurrent networks will be proposed and investigated as effective demixing models.
Network parameters will be iteratively adapted (i.e. learned) on the basis of a measure of the output
independence. In particular, the independence of the outputs will be measured by considering the
Kullback–Leibler (KL) divergence between pY½y� and ~pY½y� ¼

QN
i¼1 pyi

½yi�: Considering a demixing model
with parameters U; the cost function to be minimized is

Bfy½n�;Ug ¼ KL py;
YN
i¼1

pyi
½yi�

 !
¼

Z
I

pyðyÞ log pyðyÞ
Y

i

pyi
½yi�

, !
dy

 
¼
XN

i¼1

HðyiÞ � HðyÞ ¼ IðyÞ.

ð8Þ

The proposed expression of KL divergence (8) is equivalent to the mutual information IðyÞ among the
components of y½n� and is a measure of independence well known in BSS field [2,5,10,17–19]. Other
approaches, instead of minimizing the output mutual information, maximize the output entropyHðyÞ: Anyway
these methods have a serious limitation, since entropy maximization does not necessarily lead to mutual
information minimization. In particular, the KL divergence is preferred for the following attractive properties:
(a)
 KLðpY; ~pYÞX0; KLðpY; ~pYÞ ¼ 03pYðyÞ �
QN

i¼1 pyi
ðyiÞ;
(b)
 KLðpY; ~pYÞ is invariant with respect to permutation, scaling and transformation of the outputs by a
nonlinear monotone function;
(c)
 in this formulation KL divergence is equivalent to the mutual information IðyÞ that has a symmetric
structure [28]: Iðy1; y2Þ ¼ Iðy2; y1Þ:
The stochastic gradient and the natural gradient [29] were used to minimize the KL divergence with respect
to the model parameters. In particular the advantages of using the natural gradient have been extensively
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described in literature [5,29–36]. The choice of a gradient-based procedure leads to consider the derivatives
of (8) with respect to the model parameters

q
qF
log½pyi

ðyiÞ� ¼
_pyi
ðyiÞ

pyi
ðyiÞ

qyi

qF
¼ ciðyiÞ

qyi

qF
, (9)

where ciðyiÞ ¼ _piðyiÞ=piðyiÞ is the so-called score function (SF). Estimation of ciðyiÞ is a critical step for the
network learning, as described in detail in Section 3.1.1.
In the following two neural feedforward and recurrent architectures for BSS are proposed. They are both

based on the use of the spline neuron as a basic flexible building block.

3.1. Estimation of nonlinear functions: the spline neuron

3.1.1. Spline approximation neuron

Splines are smooth parametric curves defined by interpolation of properly defined control points
collected in a lookup table. This section briefly summarizes the main properties of splines and their use into
the neural net framework [22,37–41].
Let y ¼ hðxÞ be some function to be estimated. The spline estimation neuron provides an approximation

hðxÞ ffi ~y ¼ ĥðuðxÞ; iðxÞÞ based on two parameters ðu; iÞ directly depending on x. In the general case, given N

equispaced control points, the spline curve results as a polynomial interpolation through N � 1 adjacent
spans. In this specific application, for each input occurrence x the spline neuron estimates hðxÞ by using four
control points selected inside the lookup table. Two points are the adjacent control points on the left side of
x, while the other two points are the two control points on the right side; Fig. 3 shows an example of
interpolation.
If i is the index of the leftmost of the four control points and u ð0oup1Þ is the local1 abscissa, the pair

ði; uÞ is computed using a dummy variable z as follows

i ¼ bzc

u ¼ z � i

(
z : z ¼

1 ap1

zl 1oapN � 3

N � 3 a4N � 3

8>><
>>: where a ¼

x

D
þ

N � 1

2
,

ð10Þ
1Variable u is local with respect to the distance between two adjacent control points.
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where D is the length of each span. The complete expression of the spline estimation model is

y ¼ ĥðu; iÞ ¼ 1=2TuMQi, (11)

where

Tu ¼ ½u3 u2 u1 1�, (12)

Qi ¼ ½Qi Qiþ1 Qiþ2 Qiþ3� contains the y-values of the four control points and M 2 M4;4 (i.e. the space of
the square 4� 4 matrices). Different kinds of spline functions (e.g. Catmull-Rom or B-Spline) are available,
that differ for the choice of matrix M: In particular, an attractive property of the Catmull-Spline is that
control points lie exactly on the estimated function. In this case M is

M ¼

�1 3 �3 1

2 �5 4 1

�1 0 1 0

0 2 0 0

2
6664

3
7775. (13)

Fig. 4 represents the structure of the spline adaptive network, modelled with two blocks: GS1 and GS2.
The learning algorithm of the spline neuron is local and independent of the number of control points,

since only four control points are involved for each learning sample. This is the main advantage of using the
spline neural net with respect to other architectures like polynomial networks or multilayer perceptrons
(MLP).
The number of control points is not a critical issue in the approximation capabilities but must be properly

chosen. In fact it is well-known that a high number of control points can produce overfitting and
underlearning, while a reduced number of control points can cause underfitting and overlearning.

3.1.2. Spline approximation for ICA: direct estimation of score functions

SFs2 (9) can be used to define the following vector:

Wy½y� ¼ ½cy1
ðy1Þ � � �cyN

ðyNÞ�
T ¼ ½ _py1

ðy1Þ=py1
ðy1Þ � � � _pyN

ðyN Þ=pyN
ðyNÞ�

T.

ð14Þ
2Sometimes score functions are defined in literature as in (14) with minus sign.
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In the totally blind case there is no a priori information on the hidden sources or output pdf. This is the
reason why the output pdf should be estimated only during the learning phase, since output signals may
change.3 Using a predetermined SF based on some a priori estimation is theoretically possible but leads to
worse convergence performance. As a matter of fact, the matching between signals’ pdf and the
corresponding SFs is a critical issue for the learning algorithm, since it determines the performance in
separation. In [18] the Gram–Charlier approximation was compared to the MLP estimator in estimating
the pdf and the SFs. In [12] a polynomial function with adaptively learning coefficients was proposed. In
[7,13] a linear parametric estimation model based on a projection in a subspace spanned by nonlinear
functions was described. All these approaches are limited by the fact that learning is not local and in several
cases is performed off-line.
In [13] direct estimation of SFs by the least mean square (LMS) algorithm was described. Parameters

were estimated by minimizing the mean square error �j for each output channel j

�j ¼
1

2
Ef½ ~cjðyj ;UÞ � _pyj

ðyjÞ=pyj
ðyjÞ�

2g; j ¼ 1 . . .N. (15)

In (15) ~cjðyj ;UÞ is the spline model of the SF, while Ef:g is the expectation operator.
The gradient of (15) with respect to parameters Qc of the spline model is

q�j

qQcj

¼ E
q ~cj

qQcj

~cj �
_pyj
ðyjÞ

pyj
ðyjÞ

 !( )
. (16)

Assuming that yj is a random variable and cjðyjÞ is the theoretical SF, if f is a differentiable function
satisfying limjyj j!1 pyj

ðyjÞf ðyjÞ ¼ 0 then

E½f ðyjÞcjðyjÞ� ¼ �E½ _f ðyjÞ� (17)

(see [19] for the proof). Applying (17) to (15) we obtain

q�j

qQcj

¼
q ~cjðyj ;Q

cj Þ

qQcj

~cj þ
q2 ~cjðyj ;Q

cj Þ

qyjqQ
cj

. (18)

Eq. (18) does not contain the unknown pdf anymore but only the estimation model [19], thus making it
possible to use an unsupervised optimization algorithm. Optimization can be performed by the
conventional steepest descent method:

Qcðk þ 1Þ ¼ QcðkÞ � ZQcðkÞ
q

qQc �fUðkÞ; yg. (19)

Derivation of the cost function yields the gradient expression for the spline control points:

q�

qQc ¼
1

4
TUMTUMQ

c
i þ

1

D
_TUM

� �
, (20)

where D is the difference between the abscissas of adjacent control points.

3.2. Feedforward spline networks

Having explored the mixing model and the associated cost function, the next step is to define the
recovering network and to derive its learning rules. The proposed feedforward architecture is made of a
cascade of blocks and is depicted in Fig. 5 in the case of two sources.
3Note that during the learning phase output signals can also flip.
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Fig. 5 shows the two blocks (SG1 and SG2) spline neurons involved in the compensation of nonlinear
inversion (see Fig. 4 for the architecture of each block).
Several examples of FIR-based architectures are available in literature [4,5,8,9,18,21,26,42–45]. The

critical issue of these structures is the filter length, since a high number of taps is required to invert real
channels, with the consequence that the computational cost grows exponentially. In the proposed
architecture, the output of the generic ith channel at time n is

yi½n� ¼
XN

j¼1

bijgj

XN

h¼1

XL�1
k¼0

wjh½k�xh½n�k�

" #
.

Let define the input vector at time n x½n� ¼ ½x1½n�; . . . ; xN ½n�� and the corresponding output vector y½n� . For
n ¼ 0; . . . ;M we define the vectors X ¼ ½x½0�; . . . ;x½M��T and Y ¼ ½y½0�; . . . ; y½M��T and the output pdf as
follows:

pyðyÞ ¼
pxðxÞ

J
¼

pxðxÞQM
n¼0

j detBj
QN
i¼1

jgi½vi½n��j

� �
j det W½0�j

� � , (21)

where J is the determinant of the Jacobian matrix of the transformation between X and Y (see Appendix B
for the derivation of (21)). Indicating by UG and UC the parameters of the splines used to estimate the SFs
and the compensating nonlinear functions, the complete set of learning parameters can be expressed by

U ¼ fbij ;wpq½k�;UG;UC j8i; j; p; q; k ¼ 0 . . .L � 1g.

Eq. (8) can be rewritten by replacing pY½y� with (21), getting a new functional IfU; yg: Finally, derivation
with respect to U leads to

q
qU

IfU; yg

¼
q
qU

XM
n¼0

� log j detBj � log
YN
i¼1

gi½vi½n�� � log j detW½0�j �
XN

i¼1

log pyi
ðyiÞ

" #
.

ð22Þ
vx y

w11[k]
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Fig. 5. Proposed feedforward network for nonlinear blind deconvolution and separation.
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In (22) expected values have been replaced by instantaneous values. Application of the steepest descent
method yields

Uðl þ 1Þ ¼ UðlÞ � ZUðlÞ
q
qU

IfUðlÞ; yg, (23)

where UðlÞ is the parameter set at the lth iteration. In particular, the gradient with respect to the elements
of B is

q
qB

IfU;yg ¼ �B�T � WyG½v�T. (24)

The natural gradient can be obtained by right multiplication by BTB:
The gradient with respect to the elements of the FIR matrix W is

qIfU;yg

qW½k�

¼ �W½0��Tdk �

€g1ðv1Þ= _g1ðv1Þ

..

.

€gN ðvN Þ= _gNðvN Þ

2
6664

3
7775þ

WT
y ðBÞ1 0

0 WT
y ðBÞN

2
4

3
5

_g1ðv1Þ

..

.

_gN ðvN Þ

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;xTðn � kÞ,

ð25Þ

where ðBÞm is the mth row of the matrix B:
The natural gradient can be obtained, considering the advice of Amari [36], by right applying the term

WT½k�W½k� to (25) as follows:

qIfU;yg

qW½k�

¼ �W½k�dk �

€g1ðv1Þ= _g1ðv1Þ þ WT
y ðBÞ1 _g1ðv1Þ

..

.

€gN ðvN Þ= _gNðvNÞ þ WT
y ðBÞN _gNðvN Þ

2
66664

3
77775
XLW�1

q¼0

rTðn � k þ qÞW½q�.

ð26Þ

Eq. (26) is noncausal for lower values of k. Causality can be recovered by introducing a proper delay d on
the gradient computation. The steepest descent causalized learning rule becomes

Wðl þ 1Þ ¼ WðlÞ � ZW
q
qW

IfUðl � dÞ;yg, (27)

where d is set on the basis of the FIR size [30,36] andW has been used forW½k�: Some solutions exist where
both sides of (25) are right multiplied by WT½0�W½0�dk; thus avoiding matrix inversion [30].
The gradient with respect to the control points Qg of the spline compensating for the nonlinear distorting

functions is

qIfU;yg

qQ
gj

i

¼ �
_TuM

_TuMQ
gj

i

þ WT
y ðBÞjTuM

" #
. (28)
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The learning rule for the spline neurons dedicated to the SFs can be derived from (20). The most
attractive property of the natural gradient is the equivariance for which the learning is independent with
respect to the initial conditions. In addition, the natural gradient provides more stable learning and faster
convergence when compared to the stochastic gradient [29,31,36].
As already noted, the effectiveness of using FIR matrices is hampered by the length of filters required in

practical problems. In fact, the time required for learning grows exponentially with the filter length.
Preliminary results on this issue were provided in [25].
3.3. Recurrent spline networks

Recurrent spline networks offer a more compact alternative to FIR-based architectures. MIMO
recurrent nets have been already applied in the past to the problem of signal deconvolution
[43,46–48,32–35].
In this work the hybrid architecture presented in [35] has been adapted to the novel mixing model. Fig. 6

shows the proposed network when two inputs are considered. The block named GB has the same structure
as the output GB block of Fig. 5.
The output of the network is

yi½n� ¼
XN

j¼1

bijgj½vj½n��, (29)

where

vj½n� ¼
XN

h¼1

pjhxh½n� þ
XN

h¼1
haj

XL

k¼1

wjh½k�vh½n � k�.

Using the same notation of previous section, the output pdf can be expressed as

pyðyÞ ¼
pxðxÞ

J
¼

pxðxÞQM
n¼0 j det Bjj det Pj

QN
i¼1jgi½vi½n��j

 !n o .
ð30Þ

The set of learning parameters is U ¼ pnm; bij ;wrt½k�;UG;UCj8i; j; n;m; r; t; k ¼ 0 . . .L � 1; where UG and
UC have the same meaning as before.
v 

x 
y 

GB

w12[k]

w21[k]

p11

p21

p22

p12

Fig. 6. Recurrent network for nonlinear blind deconvolution and separation.
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Substitution of (30) into (8) and derivation with respect to parameters gives

qIfU;yg

qU

¼
q
qU

XM
n¼0

� log j det Bj � log j det Pj � log
YN
i¼1

gi½vi½n�� �
XN

i¼1

log pyi
ðyiÞ

" #

ð31Þ

which is a little different from (22).4

The learning rules for the elements of B are the same of (24) for both the stochastic and the natural
gradients, while the learning rule for the spline neural network that estimates the nonlinear function is
derived from (28). In addition, the gradient with respect to the elements of P is

qIfU;yg

qP

¼ �P�T �

€g1ðv1Þ= _g1ðv1Þ

..

.

€gN ðvNÞ= _gNðvN Þ

2
6664

3
7775þ

WT
y ðBÞ1 0

0 WT
y ðBÞN

2
4

3
5

_g1ðv1Þ

_gN ðvN Þ

2
664

3
775

8>>><
>>>:

9>>>=
>>>;xT½n�.

ð32Þ

Right multiplication of (32) by PTP gives the natural gradient. The gradient with respect to the IIR filter
taps w is

qIfU;yg

qw12½k�
¼ �

€g1ðv1Þ

_g1ðv1Þ
þ WT

y ðBÞ1 _g1ðv1Þ

� �
v2½n � k � 1�;

qIfU;yg

qw21½k�
¼ �

€g2ðv2Þ

_g2ðv2Þ
þ WT

y ðBÞ2 _g2ðv2Þ

� �
v1½n � k � 1�;

8>>><
>>>: k ¼ 0 . . .L � 1, (33)

where ðBÞi is the ith column of matrix B: The gradient for the spline model of the SF is again (20).
4. Experimental results

Several experimental tests were performed to assess the performance of the proposed architectures.
Different solutions with different mixing environments were considered and compared. In order to make it
possible the proper visualization of results, only pairs of mixed signals were considered.
Signals were assumed to lie in the range ½�1; 1� and normalized so that signals v1 and v2 in Fig. 2 span the

range ½�0:8; 0:8�: Different indexes of performance to evaluate the output separation are available in
literature [1,6,7]. In this paper the separation index Sj of the jth source was adopted [49]

Sj ¼ 10 log EfðysðjÞ;jÞ
2
g E

X
kaj

ðysðjÞ;kÞ
2

( )," #
. (34)

In (34) yi;j is the ith output signal when only the jth input signal is present while sðjÞ is the output channel
corresponding to the j-input.
4All considerations previously done about (22) are still applicable.
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Experiment 1. The first test was used to verify the validity of Proposition 1. Two white random signals
having Gaussian and uniform distributions, respectively, were considered.

The mixing matrix was A ¼ ½0:6; �0:3; 0:5; 0:7�; the nonlinear distortion F½f 1ðr1Þ; f 2ðr2Þ� ¼ ½r1 þ

2r31; 0:5r2 þ tanhð7r2Þ�; while the convolutive channel was represented by

Z½k� ¼
0:4� 0:15z�1 þ 0:3z�2 0:15þ 0:1z�1 � 0:03z�2

�0:15þ 0:15z�1 þ 0:05z�2 0:35þ 0:15z�1 � 0:05z�2

" #
.

According to Proposition 1, separation was performed by the feedforward network. Fig. 7 shows the joint
distributions of the source, the mixed and the recovered signals.
Fig. 8 shows the separation indexes for the two sources during learning. Separation is reached after about

150 epochs.

Experiment 2. More tests were performed in extension to conditions of Proposition 1. In particular the use
of flexible on-line SF estimation allows to deal with both subgaussian and supergaussian sources, with no
assumptions on the statistical properties of the sources. The following results are thus representative of a
large number of real situations.

Three signals were considered in the following tests: a male speech s1; a female speech s2 and white
gaussian noise s3: These signals are shown in Fig. 9, together with their empirical distributions. Fig. 10
shows the joint pdf of pairs ½s1; s2� and ½s2; s3�:
Fig. 7. Experiment 1: Gaussian ðs1Þ and uniformly ðs2Þ distributed white signals: (a) joint input pdf; (b) joint pdf of mixed signals; and

(c) joint pdf of recovered signals.
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Fig. 9. Experiment 2: (a) sources considered in experiments: male speech ðs1Þ; female speech ðs2Þ and white noise ðs3Þ: Sources were
sampled at 8 kHz; and (b) empirical distributions of sources.
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Fig. 10. Experiment 2: (a) joint pdf of signals ½s1 s2�; and (b) joint pdf of signals ½s2 s3�:
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For all mixing environments the nonlinear distortion applied was

F½f 1ðr1Þ; f 2ðr2Þ� ¼ ½r1 þ 2r
3
1; 0:5r2 þ tanhð5r2Þ�.

Table 1 summarizes the experimental setup.

Experiment 2.1. Signals s1 and s2 were first considered. The mixing environment was

A ¼
0:7 �0:15

0:35 0:7

� �
; Z½k� ¼

0:05� 0:025z�10 þ 0:125z�30 þ 0:0625z�30 �0:045� 0:035z�20

0:025� 0:0125z�10 þ 0:0645z�20 0:05� 0:0125z�20 þ 0:025z�30

" #
.

The recurrent demixing structure of Fig. 4 was employed, with 20-tap filters and 53 spline control
points. The learning rates were mspline ¼ 10

�6; mW ¼ 10�5; mB ¼ 10�5: Training was stopped after 180
epochs. Fig. 11 shows the results. Effective separation was confirmed also by listening tests.
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Fig. 11. Experiment 2.1: (a) mixed signals ½x1;x2�; (b) demixed signals ½y1; y2�; (c) joint pdf of ½x1; x2�; and (d) joint pdf of ½y1; y2�:

Table 1

Experimental setup

Experiment no. Architecture Source pair

2.1 Recurrent ½s1; s2�
2.2 Recurrent ½s2; s3�
2.3 Feedforward ½s1; s2�
2.4 Feedforward ½s2; s3�

D. Vigliano et al. / Signal Processing 85 (2005) 997–10281012
Fig. 12 shows the parameters estimated by the demixing structure. It is demonstrated the capability of
spline neurons in estimating both the SFs and the inverse of distorting functions.
Final estimated values of matrices P and B were P ¼ ½0:801; 0:251;�0:096; 0:724� and B ¼

½0:854; 0:105;�0:085; 0:528�:
Finally, Fig. 13 depicts the convergence of the separation indexes during learning.
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Fig. 12. Experiment 2.1: (a) estimation of the SFs and the inverse nonlinear functions; and (b) demixing filter taps for W12;W21:
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Experiment 2.2. Signal pair ½s2; s3� was considered in this case. The mixing matrix A was of the same
experiment 2.1, while Z½k� was

Z½k� ¼
0:08e�ðk�1Þ=4 þ 0:045e�ðk�10Þ=4 �0:03e�ðk�1Þ=2 þ 0:045e�ðk�15Þ=4

0:04e�ðk�1Þ=6 þ 0:01e�ðk�8Þ=6 0:06e�ðk�1Þ=4 þ 0:01e�ðk�15Þ=4

" #
; k ¼ 1; . . . ; 30.

The recurrent architecture was used again, with 30-tap filters and 53 spline control points. The same
learning rates of Experiment 2.1 were employed. Fig. 14 shows the separation results after 80 learning
epochs.

Results are quite good, especially when considering the difficult mixing environment and the reduced
number of learning epochs.
Fig. 15 describes the estimation of both the SFs and the inverse distorting functions, and the behavior of

the separation indexes.
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Fig. 15. Experiment 2.2: (a) estimation of the SFs and the inverse nonlinear functions; and (b) separation indexes during learning.
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Experiment 2.3. In this experiment the signal pair ½s1; s2� (male and female speech) was considered. The
same mixing environment of Experiment 2.1 was adopted. The feedforward demixing architecture of Fig. 5
was employed, with 70-tap filters and 103 spline control points. Training was performed for 150 epochs
training, with learning rates mSpline ¼ 10

�7; mB ¼ 7� 10�7;mW½k� ¼ 7� 10
�9: Fig. 16 shows the recovered

signals and their joint distribution.

Fig. 17 shows the estimation of the SFs and of the inverse of distorting functions, and the separation
indexes.

Experiment 2.4. Mixing of signals ½s2; s3� was again considered, with the same mixing environment of
Experiment 2.2. The feedforward architecture was applied, with 70-tap filters and 103 spline control points.
One hundred and fifty training epochs and the same learning rates of previous experiment were considered.

Recovered signals and their joint distribution are presented in Fig. 18. Fig. 19(a) shows the filter taps of
the demixing structure W½k�; while Fig. 19(b) depicts the evolution of the separation indexes.
Finally, matrix B was estimated as B ¼ ½0:898; 0:202; 0:329; 0:693�:
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Fig. 16. Experiment 2.3: (a) demixed signals ½y1; y2�; and (b) joint pdf of recovered signals ½y1; y2�:
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Remarks. A first consideration is that the recurrent architectures produce demixed outputs with the same
quality of the FIR networks but using a reduced set of learning parameters, with the consequence of a lower
computational cost. The number of spline control points does not substantially affect the computational
effort, since each learning step involves only four control points. A critical issue concerning the choice of
the spline control points is the occurrence of low-value outputs during the learning phase, with the risk of a
low estimation resolution. Convergence of the algorithms was demonstrated by averaging through an
extensive set of different environments, for each pair of sources and each recovering architecture. For each
set of sources, 20 experiments were performed for both architectures, with different initializations, and the
average separation index was computed. Table 2 summarizes these results.
The average values of the separation index in Table 2 provide an empirical verification of the algorithm

convergence also when correlated sources are considered.
5. Conclusion

In this paper a novel type of mixing environment consisting in the convolutive mixing of PNL mixtures
was introduced and described. Proof of existence and uniqueness of the solution was provided. The



ARTICLE IN PRESS

0 20 40 60 80 100 120
-1.5

-1
-0.5

0
0.5

1
1.5

Distorsion compensation ch1

0 20 40 60 80 100 120
-1.5

-1
-0.5

0
0.5

1
1.5

Distorsion compensation ch2

0 20 40 60 80 100 120
-4
-3
-2
-1
0
1
2
3
4

Score Function estimation ch1

0 20 40 60 80 100 120
-4
-3
-2
-1
0
1
2
3
4
Score Function estimation ch2

(a)

0 10 20 30 40 50 60 70 80 90 100110120130140150
2

4

6

8

10

12

14

16
Separation  Index

Epochs

Ch 1

Ch 2

(b)

Fig. 17. Experiment 2.3: (a) estimation of the SFs and of the inverse of nonlinear functions; and (b) separation indexes.
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proposed separation algorithms employed flexible spline networks to perform local on-line estimation of
the unknown functions (pdf and nonlinear compensating functions).
Since the natural gradient was used, the learning algorithm of every single neural block is equivariant by

itself, but considering all the three blocks together this attractive property cannot be guaranteed, thus
possibly leading to an increase of the learning time. Quality of the results was verified in different mixing
environmental conditions in terms of separation indexes of the sources.
The proposed algorithm works by enforcing both spatial and temporal independence by minimizing the

cost function proposed in (8).
The best results have been obtained with white sources but good performances have been reached also in

the separation of voice signals (that are not white) due to the robustness of the proposed algorithm.
Appendix A. Proof of Proposition 1

Sufficient condition: existence of the solution.
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Given the channel model (7), it is easy to verify that if s½n� is a spatially independent random vector,
under the given assumptions, y½n� will be spatially independent too and the channel does not produce any
mixing. Given the mixing model FfA;F;Zg; assumptions (a)–(c) guarantee that there exist a matrix B; N

functions gi½�� and a matrixW½k� in which each element is an MA filter of at most infinite order,5 such that:

Z½k� �W½k� ¼ I,

GfFfAs½n�gg ¼ As½n�,

BAs½n� ¼ s½n�. ð35Þ

Based on (35), the input–output transformation can be written as BG½W½n� � Z½n�FfAs½n�g� ¼ PKDs½n�:
Necessary condition: uniqueness of the solution.
5An important corollary of the famous Wold decomposition [50] ensures that an ARMA model can be represented as MA model or

AR model of at most infinite order. In practice, finite order MA models for those infinite order are often sufficiently accurate, because

the order of the filter was properly chosen to yield acceptable error in inversion.
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Fig. 19. Experiment 2.4: (a) demixing filter taps w11; w12; w21; w22; and (b) separation indexes during learning.

Table 2

Average performance of the proposed algorithms

Original sources Used network Mean S (dB) ½Ch1;Ch2�

Set 1 [s1; s2] Feedforward [13.90; 14.83]

Male & female speech Recurrent [15.19; 14.64]

Set 2 [s2; s3] Feedforward [15.59; 14.10]

Female speech & white noise Recurrent [13.21; 14.05]
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This is to prove that if y½n� is a spatially independent random vector, the channel model must be (7).
The transformation mapping s into y is

y½n� ¼ BG
XLW�1

k¼0

W½k�
XLZ�1

p¼0

Z½k�FfAs½n � k � p�g

" #
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Given the channel H½k� ¼ W½k� � Z½k� (using the notation of Lambert [26]), let B be the set of pairs of
indexes ði; jÞ such that hij ½k�a0 for some integer k. We first introduce the two following propositions.

Proposition A. Under the assumptions of Proposition 1, for each possible pair ði; jÞ 2 B there is at most one

value k ¼ k̄ such that hi;j ½k̄�a0: Moreover considering two different pairs ði; jÞ and ðk; lÞ in B then k̄ij ¼ k̄kl :

Proof. Considering that both B; A; FðÞ and GðÞ are static applications but H is convolutive so, if there were
more than one value k̄; the output signal y½n� could not be white as assumed in hypothesis. Indeed
considering the second part of Eq. (36) for the generic ith output channel: yi½n� ¼ eiðs1½n�; s1½n �

1�; . . . ; s1½n � LH �; . . . ; sN ½n�; . . . ; sN ½n � LH �Þ; then it follows that the temporal correlation for the same
output channel is : Efyi½n�; yi½n � L�ga0 when 0oLpLH :
If different pairs ði; jÞ and ðk; lÞ of B were such that k̄ijak̄kl ; then the recovery structure (6), assumed for

hypothesis, would not be able anymore to provide independent white outputs considering that both B; A;
FðÞ and GðÞ are static applications: yi½n� ¼ eiðs1½n � k̄1�; s2½n � k̄1�; . . . ; sN ½n � k̄1�; . . . ; s1½n � k̄N �; . . . ; sN ½n �

k̄N �Þ (in which k̄1; . . . ; k̄N are N possible values for k). &

Proposition B. Under the assumptions of Proposition 1, for a given k ¼ k̄ verifying Proposition A, in matrix

H½k̄� there are no pairs of indexes ði; jÞ 2 B having the same i or j components, moreover the cardinality of B
cannot be smaller than the number of columns (or rows). In other words ði; jÞ; ðh;mÞ 2 B ) iah; jam:

Proof. The proof is based on geometrical consideration about the support of joint pdf; let us consider the
global input–output model (36) represented in Fig. 20.
It is well known that N independent signals (of finite support, as hypothesis (d) of Proposition 1 assumes)

have joint pdf in an ‘‘hyper rectangular’’ support (see [51] for problem in R2; an example is in Fig. 21(a)) so
s 2 IS : ½a1; b1� � � � � � ½aN ; bN �; the same can be assumed for the independent outputs so: y 2 IY :
½a0
1; b

0
1� � � � � � ½a0

N ; b
0
N �:
s  p v q 

 F  H G B A

r y

Fig. 20. Input–output global model.

s1

s2 r2

r1

p2

 p1(a) (b) (c)

Fig. 21. Joint distribution ‘‘borders’’ in s plane (a), r plane (b) and p plane (c).
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It is well known that the R2 linear mappingM ¼ a11
a21

a12
a22

h i
of an independent R2 random vector produces

a random vector for which the support of the joint pdf is a parallelogram where the slope of the borders are
a11=a21 and a21=a22 as in Fig. 21(b). Extending the concept to RN ; the vector r : r ¼ As has a joint
distribution with hyper-parallelogram support on the r space. The vector p

p :

p1 ¼ f 1ðr1Þ

..

.

pN ¼ f NðrNÞ

8>><
>>: (37)

has the pdf with the typical support of ‘‘PNL mixing’’; an example in R2 is in Fig. 21(b).
For the hypothesis of output independence y has the same hyper-rectangular support of the vector s

admitting at most a different scaling factor. If b�1
ij is the ijth element of the inverse of the matrix B; the

vector

v :

v1 ¼ b�1
11 y1 þ b�1

12 y2 þ � � � þ b�1
1NyN

..

.

vN ¼ b�1
N1y1 þ b�1

N2y2 þ � � � þ b�1
NNyN

8>>><
>>>: (38)

has an hyper-parallelogram domain generally different from the one of vector r: Moreover the vector r
differs from the vector v for at most a linear nonsingular transform : 9C : r�!

C
v:

v ¼

c11 � � � c1N

..

. . .
. ..

.

cN1 � � � cNN

2
664

3
775r. (39)

Considering g�1
i ðviÞ (the inverse of ith function gið:Þ that always exists by assumptions), the vector:

q :

q1 ¼ g�1
1

v1ð Þ

..

.

qN ¼ g�1
N

vNð Þ

8>>><
>>>: (40)

has the pdf with the typical support of ‘‘PNL mixing’’; an example in R2 is in Fig. 21(c). From the structure
of the global input–output model (36) (Fig. (20)) it is possible to see that vector q can be obtained from
vector p by the linear mapping H : p�!

H
q:

q ¼ Hp. (41)

Finally (39) and (41) must both hold. By substitution of (40), (41) and (37) inside (39), it results:

c11r1 þ c12r2 þþc1NrN ¼ g1ðh11f 1ðr1Þ þ h12f 2ðr2Þ þ � � � þ h1Nf NðrN ÞÞ

..

.

cN1r1 þ cN2r2 þþcNNrN ¼ gN ðhN1f 1ðr1Þ þ hN2f 2ðr2Þ þ � � � þ hNNf N ðrN ÞÞ:

(42)

Considering the well-known results about the uniqueness of the inverse function, (42) is true if and only if at
least one of the following is true:
1.
 nonlinear function gi and f i; for each i ¼ 1; . . . ;N are in effect linear functions;

2.
 for the right side of each equation of (42) 8i; 9!j : hija0:
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(or second) component, at least two output variables would not be independent considering the structure of
the input output model (5) and (6).
The first assumption is in contrast with the hypothesis. So if more than one pair ði; jÞ 2 B had the same first

Then if the cardinality of B were less than the number of rows (or columns) it would not be possible to
obtain N independent output components. &

Merging results of Propositions A and B, the pdf of s can be written as a function of the pdf of y

psðsÞ ¼
YN
i¼1

psi
ðsiÞ ¼

YN
i¼1

pyi

XN

j¼1

bijgj hjq½k�f q

XN

m¼1

aqmsm½n � k�

 !" # !
jJj 8s 2 RN .

ð43Þ

Proposition B grants that in (43) 8j 2 1; . . . ;N; 9!q; k : hjq½k�a0:
From assumption (c) 9s̄ 2 RN such that psðs̄Þ � 0: From (36), for a nonnull Jacobian J; there exists some

y0 ¼ ½y01; . . . ; y
0
N � 2 RN such that

QN
i¼1 pyi

ðy0i Þ ¼ 0: Consequently there is at least one integer i such that

pyi
ðy0i Þ ¼ 0: This leads to the following equation:

y0i ¼
XN

j¼1

bijgj hjq½k�f q

XN

m¼1

aqmsm½n � k�

 !" #
. (44)

Solutions of (44) lie onHiðsÞ; which is a hypersurface in R
N : It is evident that 8s 2 HiðsÞ ) psðsÞ ¼ 0: For a

given i, HiðsÞ is parallel to the hyperplane orthogonal to the axis si:
Suppose that HiðsÞ is not parallel to any si ¼ 0 plane. The projection of HiðsÞ onto si should be

R : 8si 2 R 9s1; . . . ; si�1; siþ1; . . . ; sN : s 2 Hi ) psðsÞ � 0: This cannot be true since
R
S

psðsÞds ¼ 1: With-
out loss of generality, it should be noted that:

XN

j¼1

bijgj hjq½k�f q

XN

m¼1

aqmsm½n � k�

 !" #
¼ wsðiÞðssðiÞÞ; i ¼ 1; . . . ;N, (45)

where wsðiÞðssðiÞÞ is a generic function depending only on ssðiÞ (that is the source for the ith output).
Considering the results of Propositions A and B, (44) can be written for each channel

yi ¼
XN

j¼1

bijgj½hjq½k�f qððAÞqsÞ�,

y~i ¼
XN

j¼1

b~ijgj½hjp½k�f pððAÞpsÞ�, ð46Þ

where ðAÞq is the qth row of matrix A: Then without any loss of generality taking sðiÞ ¼ i

XN

j¼1

bijgj hjq½k�f q

XN

m¼1

aqmsm½n � k�

 !" #
¼ wiðsiÞ; i ¼ 1; . . . ;N. (47)
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Derivation with respect to s yields

_w1ðs1Þ 0

0 _wN ðsNÞ

" #
¼ B

_g1 h1q½k�f q

PN
m¼1

aqmsm½n � k�

� �� �
0

0 _gN ½s�

2
64

3
75

�
h11½k� 0

0 hNN ½k�

" # _f 1
PN

m¼1

a1msm½n � k�

� �
0

0 _f 1ðsÞ

2
664

3
775A. ð48Þ

Considering s1 and s2 as coordinates of the hypersurfaceHðsÞ; (48) should be evaluated in s1 and in s2 as
follows:

Dðs1Þ ¼ BK _Gðs1ÞHK _Fðs1ÞA

Dðs2Þ ¼ BK _Gðs2ÞHK _Fðs2ÞA

(
!

Dðs1Þ ¼ BK _GH _Fðs1ÞA

Dðs2Þ ¼ BK _GH _Fðs2ÞA:

(
(49)

Then eliminating B :

A D�1ðs2ÞDðs1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
d11ðs2; s1Þ 0

. .
.

0 dNNðs2; s1Þ

2
664

3
775
¼ K�1

_GH _F
ðs2ÞK _GH _Fðs1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l11ðs2; s1Þ 0

. .
.

0 lNN ðs2; s1Þ

2
664

3
775

A.

As expressed in assumption (a), matrix A is regular. For each pair of nonzero elements of A it is possible to
write:

aij ½djjðs2; s1Þ � liiðs2; s1Þ� ¼ 0

ahj ½djjðs2; s1Þ � lhhðs2; s1Þ� ¼ 0

(
) liiðs2; s1Þ ¼ lhhðs2; s1Þ 8s2; s1 2 H. (50)

From (50) it follows:

_gi½
~f sðiÞððAÞsðiÞs1Þ�

_~f sðiÞððAÞsðiÞs1Þ

_gh½
~f sðhÞððAÞsðhÞs2Þ�

_~f sðhÞððAÞsðhÞs2Þ
¼ C 8s2; s1, (51)

where ~f sðiÞððAÞsðiÞs1Þ ¼ af sðiÞððAÞsðiÞs1Þ and C is a constant. For the two linear forms in (50) ðAÞsðiÞs1 ðAÞsðhÞs2

are independent as assumed in (a), it is possible to express (50) in the following way: _gi½
~f sðiÞðxÞ�

_~f sðiÞðxÞ ¼

C _g~i½
~f sð~iÞðyÞ�

_~f sð~iÞðyÞ 8x; y 2 R: This can be true if and only if gið:Þ is the inverse of f sðiÞð:Þ; up to a scaling factor.

From (36), by previous results it follows:

y½n� ¼ B

x1

. .
.

xN

2
664

3
775As½n � k�, (52)

where x1; . . . ; xN are scaling coefficients.
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This method above reduces the mixing–demixing nonlinear convolutive channel (A2) to the simpler,
linear and static model (52). By considering

~B ¼ B

x1

. .
.

xN

2
664

3
775 (53)

and ŝ½n� ¼ s½n � k�; (52) turns into y ¼ ~BAŝ: For this formulation independent outputs can be obtained if
and only if

~BA ¼ P

�1

. .
.

�N

2
664

3
775, (54)

where P is a permutation matrix. &
Appendix B

The Jacobian matrix in (21) has been derived extending the method used in [11] to the novel
mixing–demixing environment introduced in this paper. Considering vectors Y ¼ ½y½0�; . . . ; y½M��T and
X ¼ ½x½0�; . . . ;x½M��T; it is possible to express the demixing model as

Y ¼ BGðWXÞ, (55)

in which:

W ¼

W½0� 0 � � � � � � 0

W½1� W½0� 0 ..
.

..

.
W½1� W½0� 0 ..

.

W½LW � . .
.

W½0� 0

0 W½LW � � � � W½1� W½0�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; G½v� ¼

Gðv½1�Þ

..

.

Gðv½M�Þ

2
6664

3
7775,

Gðv½1�Þ ¼

gðv1½1�Þ

..

.

gðvN ½1�Þ

2
6664

3
7775

and

B ¼

B 0 � � � � � � 0

0 B 0 ..
.

..

.
0 B 0 ..

.

..

.
0 B 0

0 � � � � � � 0 B

0
BBBBBBBB@

1
CCCCCCCCA
.
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The Jacobian of (55) is

detðJÞ ¼ det

qy1
qx1

qy1
qx2

� � �
qy1
qxM

qy2
qx1

qy2
qx2

..

.

..

. . .
. ..

.

qyM

qx1
� � � � � �

qyM

qxM

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ det

qy1
qx1

0 � � � 0

qy2
qx1

qy2
qx2

0 ..
.

..

. . .
.

0

qyM

qx1
� � � � � �

qyM

qxM

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼
Y
i¼1

det
qyi

qxi

� �
. ð56Þ

The global Jacobian matrix is a block triangular matrix, each block of the diagonal of (56) is defined as

qyh

qxh

¼ Jsmall½h� ¼ det

qy1½h�

qx1½h�

qy1½h�

qx2½h�
� � �

qy1½h�

qxN ½h�

qy2½h�

qx1½h�

qy2½h�

qx2½h�
..
.

..

. . .
. ..

.

qyN ½h�

qx1½h�
� � � � � �

qyN ½h�

qxN ½h�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(57)

in which

Jsmalli;j ½h� ¼
qyi½h�

qxj½h�
¼
XN

m¼1

bim _gmðvmÞ
q

qxj½h�

XLz

k¼0

XN

p¼1

wmp½k�xp½h � k�

 ! !

¼
XN

m¼1

ðbim _gmðvmÞwmp½0�xjÞ. ð58Þ

For a better understanding it is possible to develop the computation of (58) in R2 and then extend it to RN :
The expression of (58) in R2 is

Jsmalli;j ¼
X2
M¼1

bim _gm½vm�wmj½0�.
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The determinant of one block is

detðJsmallÞ ¼
X2
m¼1

b1m _gm½vm�wm1½0�
X2
m¼1

b2m _gm½vm�wm2½0�

 !

�
X2
m¼1

b1m _gm½vm�wm2½0�
X2
m¼1

b2m _gm½vm�wm1½0�

 !

from which, it is possible to obtain the final expression of the Jacobian of each block in R2

detðJsmallÞ ¼ _g1½v1� _g2½v2� detðBÞ detðW½0�Þ. (59)

For the particular block structure of the global Jacobian matrix:

detðJÞ ¼
YM
i¼1

detðJsmallÞ ¼
YM
i¼1

_g1½v1½i�� _g2½v2½i�� detðW½0�Þ detðBÞ. (60)

Eq. (60) is the closed form of Jacobian in R2: Eqs. (59) and (60) can be extended to RN :
The extension of (59) is

detðJsmallÞ ¼
YN

j

_gj½vj½i�� detðW½0�Þ detðBÞ. (61)

It is possible to obtain (61) considering that:
�
 each term which does not contain the product of all the N terms gh½vh� like _g1½v1½i�� � _g2½v2½i�� � . . . � _gN ½vN ½i��

but contains _g1½v1½i��
2 � _g3½v2½i�� � . . . � _gN ½vN ½i�� can be simplified;
�
 terms which contain _g1½v1½i�� � _g2½v2½i�� � . . . � _gN ½vN ½i�� can be grouped together;

�
 among the terms obtained by grouping _g1½v1½i�� � _g2½v2½i�� � . . . � _gN ½vN ½i��; it is possible to isolate the
products of the determinant of matrix B and of matrix W½0� .

From the above consideration it is possible to derive the following:

detðJÞ ¼
YM
i¼1

detðJsmallÞ ¼
YM
i¼1

YN
j

_gj½vj½i�� detðW½0�Þ detðBÞ

( )
. (62)

Eq. (62) is the expression of the Jacobian used in (21). &
References

[1] C. Jutten, J. Herald, Blind separation of sources, Part I: an adaptive algorithm based on neurometric architecture, Signal

Processing 24 (July 1991) 1–10.

[2] P. Comon, Independent component analysis, A new concept? Signal Processing 36 (1994) 287–314.

[3] D. Shobben, P. Sommen, A new blind signal separation algorithm based on second order statistics, in: Proceedings of the

IASTED: International Conference on Signal and Image Processing, Las Vegas, USA, October 27–31, 1998.

[4] A. Bell, T. Sejnowski, An Information-maximisation approach to blind separation and blind deconvolution, Neural Comput. 7 (5)

(1995) 1129–1159.

[5] S. Amari, S. Douglas, A. Cichocki, H. Yang, Multichannel blind deconvolution and equalization using the natural gradient, in:

Proceedings of the First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless, Paris, April 1997,

pp. 101–104.

[6] J.-F. Cardoso, Infomax and maximum likelihood for blind source separation, IEEE Lett. Signal Processing 4(4) (April 1997)

112–114.



ARTICLE IN PRESS

D. Vigliano et al. / Signal Processing 85 (2005) 997–1028 1027
[7] D.T. Pham, D. Garrat, C. Jutter, Separation of mixture of mixture of independent sources through maximum likelihood

approach, in: Proceedings of the EUSIPCO, Brussel, Belgium, August 1992, pp. 771–774.

[8] H. Hyvarinen, Fast and robust fixed-point algorithm for independent component analysis, Trans. Neural Networks 10(3) (May

1999) 626–634.

[9] J.-F. Cardoso, B.I. Laheld, Equivariant adaptive source separation, IEEE Trans. Signal Process. 44 (12) (December 1996)

3017–3030.

[10] T.W. Lee, M. Girolami, A.J. Bell, T.J. Sejnowsky, A unifying information-theoretic framework for independent component

analysis, Int. J. Comput. Math. Appl. Comput. (1999).

[11] S. Choi, A. Cichocki, S. Amari, Flexible independent component analysis, J. VLSI Signal Process. Systems Image Video Technol.

X (May 2000) 1.

[12] S. Fiori, Blind signal processing by the adaptive activation function neuron, Neural Networks 13 (6) (August 2000) 597–611.

[13] N. Charkani, Y. Deville, Optimization of the asymptotic performance of time domain convolutive sources separation algorithm,

in: Proceedings of the ESANN, Bruges, Belgium, April 1997, pp. 273–278.

[14] T.W. Lee, B. Koehler, A. Orglmeister, Blind source separation of nonlinear mixing models, Neural Network Signal Process. VII

(1997).

[15] P. Pajunen, A. Hyvarinen, Nonlinear blind source separation by self-organizing maps, Proceedings in ICONIP, Hong Kong, vol.

2, September 1996, pp. 1207–1210.

[16] A. Hyvarinen, P. Pajunen, Nonlinear independent component analysis: existence and uniqueness results, Neural Networks 12 (2)

(1999) 429–439.

[17] Y. Tan, J. Wang, J.M. Zurada, Nonlinear blind source separation using radial basis function, IEEE Trans. Neural Networks 12

(1) (January 2001) 124–134.

[18] A. Taleb, A generic framework for blind source separation in structured nonlinear models, IEEE Trans. Signal Process. 50 (8)

(August 2002).

[19] A. Taleb, C. Jutten, Source separation in post nonlinear mixtures, Trans. Signal Process. 47 (10) (August 1999).

[20] M. Solazzi, R. Parisi, A. Uncini, Blind source separation in nonlinear mixtures by adaptive spline neural network, in: Proceedings

of the Third Workshop on Independent Component Analysis and Signal Separation (ICA2001), San Diego, CA, USA, 2001.

[21] M.B. Zade, C. Jutten, K. Najeby, Blind separating, convolutive post nonlinear mixture, ICA 2001, in: Proceedings of the

Third Workshop on Independent Component Analysis and Signal Separation (ICA2001), San Diego, CA, USA, 2001,

pp. 138–143.

[22] F. Milani, M. Solazzi, A. Uncini, Blind source separation of convolutive nonlinear mixtures by flexible spline nonlinear functions,

Proceedings of the IEEE International Conference on Acoustic Speech and Signal Proceedings of the ICASSP’02, Orlando, USA,

May 2002.

[23] M. Solazzi, F. Piazza, A. Uncini, Nonlinear blind source separation by spline neural network, in: ICASSP 2001, Salt Lake city,

USA, May 8–11, 2001.

[24] C. Jutten, J. Karhunen, Advances in nonlinear blind sources separation, in: Proceedings of the Fourth International Symposium

on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, April 2003.

[25] D. Vigliano, A. Uncini, Flexible ICA solution for a novel nonlinear blind source separation problem, IEE Electron. Lett. 39 (22)

(30 October 2003) 1616–1617.

[26] R.H. Lambert, Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures. A dissertation

presented to the Faculty of the Graduate School, University of Southern California, Department of Electrical Engineering, May

1996.

[27] D. Vigliano, A. Uncini, ‘‘Mirror Model’’ gives separation of convolutive mixing of PNL mixtures, IEE Electron. Lett. 40 (7)

(April 2004).

[28] A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill International Edition, third edition, 1991.

[29] S. Amari, S.C. Douglas, Why natural gradient, in: Proceedings of the IEEE ICASSP, vol. II, Seattle, WA, May 1998, p. 1216.

[30] S. Choi, A. Cichocki, S. Amari, Two spatio-temporal decorrelation learning algorithms and their application to multichannel

blind deconvolution, in: Proceedings of the ICASSP, Phoenix, AZ, March 1999, pp. 1085–1088.

[31] S. Amari, Information geometry on hierarchy of probability distribution, IEEE Trans. Inform. Theory 47 (5) (July 2001).

[32] S. Choi, S. Amari, A. Cicochi, Natural gradient learning for spatio-temporal decorrelation: recurrent network, IEICE Trans.

Fund. E83-A (12) (December 2000).

[33] S. Choi, H. Hong, H. Glotin, F. Bertommier, Multichannel signal separation for cocktail party speech recognition: a dynamic

recurrent network, in: Proceedings of the ICSLP, Beijing, China, 2000.

[34] S. Choi, A. Cichocki, Blind signal deconvolution by spatio temporal decorrelation and demixing, in: IEEE Workshop on Neural

Networks for Signal Processing, Ameldia Island, FL, September 1997.

[35] S. Choi, A. Cichocki, Adaptive blind separation of speech signals: cocktail party problem, in: International Conference on Speech

Processing (ICSP’97), Seoul, Korea, August 26–28, 1997, pp. 617–622.

[36] S. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (1998) 251–276.



ARTICLE IN PRESS

D. Vigliano et al. / Signal Processing 85 (2005) 997–10281028
[37] A. Uncini, F. Piazza, Blind signal processing by complex domain adaptive spline neural network, Trans. Neural Networks 14 (2)

(March 2003).

[38] A. Uncini, L. Vecci, P. Campolucci, F. Piazza, Complex-valued neural networks with adaptive spline activation function for

digital radio links nonlinear equalization, IEEE Trans. Signal Process. 47 (2) (February 1999).

[39] S. Guarnieri, F. Piazza, A. Uncini, Multilayer feedforward networks with adaptive spline activation function, IEEE Trans. Neural

Networks 10 (3) (May 1999) 672–683.

[40] A. Uncini, L. Vecci, F. Piazza, Learning and approximation capabilities of adaptive Spline activation function neural network,

Neural Network 11 (2) (March 1998) 259–270.

[41] M. Solazzi, F. Piazza, A. Uncini, An adaptive spline nonlinear function for blind signal processing, in: Proceedings of the IEEE

Workshop on Neural Networks for Signal Processing, vol. X, December 2000, pp. 396–404.

[42] M. Cohen, G. Cauwenberghs, Blind separation of linear convolutive mixtures through parallel stochastic optimization, in:

Proceedings of the ISCAS, 1998.

[43] T.W. Lee, A. Bell, R.H. Lambert, Blind separation of delayed and convolved sources, in: M.C. Mozer, M.I. Jordan, T. Petsche

(Eds.), Advances in Neural Information Processing Systems, vol. 9, MIT Press, Cambridge, MA, 1997, pp. 758–764.

[44] T.W. Lee, A. Bell, R. Orglmeister, Blind source separation of real world signals, in: Proceedings of the International Conference

on Neural Networks (ICNN), Houston, June 1997.

[45] I. Sabala, A. Cichocki, Relationships between instantaneous blind source separation and multichannel blind deconvolution, in:

Proceedings of the IJCNN, 1998.

[46] K. Torkkola, Blind deconvolution, information maximization, and recursive filters, in: Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing, Munich, Germany, April 21–24, 1997, pp. 3301–3304.

[47] K. Torkkola, Blind separation of audio signals: Are we there yet? in: Proceedings of the ICA and BSS, Aussois, France, January

11–15, 1999, pp. 239–244.

[48] K. Torkkola, Blind separation of convolved sources based on information maximization, in: IEEE Workshop on Neural

Networks for Signal Processing, Kyoto, Japan, September 4–6, 1996, pp. 423–432.

[49] D. Shobben, K. Torkkola, P. Smaragdis, Evaluation of blind signal separation methods, in: Proceedings of the ICA and BSS,

Aussois, France, January 11–15, 1999.

[50] S.M. Kay, S.L. Marple, Spectrum analysis: a modern perspective, Proc. IEEE 69 (11) (1981) 1380–1418.

[51] C.G.A Prieto, J. Ortega, New geometrical approach for blind separation of sources mapped to a neural network, in: Proceedings

of the NICROSP-96, International Workshop on Neural Networks for Identification, Control, Robotics, and Signal-Image

Processing, 21–23 August, 1996, Venecia, Italia.


	An information theoretic approach to a novel nonlinear independent component analysis paradigm
	Introduction
	Nonlinear convolutive mixing model
	Model description
	Source separability

	Demixing algorithms and architectures
	Estimation of nonlinear functions: the spline neuron
	Spline approximation neuron
	Spline approximation for ICA: direct estimation of score functions

	Feedforward spline networks
	Recurrent spline networks

	Experimental results
	Conclusion
	Appendix A. Proof of Proposition 1
	Appendix B
	References


